RAS BiologyЗоологический журнал Russian Journal of Zoology

  • ISSN (Print) 0044-5134
  • ISSN (Online) 3034-5456

PREVALENCE OF HAEMOSPORIDIAN INFECTION IN RESIDENT AND MIGRATORY BIRD SPECIES IN THE KHINGAN NATURE RESERVE, AMUR REGION

PII
S30345456S0044513425100038-1
DOI
10.7868/S3034545625100038
Publication type
Article
Status
Published
Authors
Volume/ Edition
Volume 104 / Issue number 10
Pages
28-43
Abstract
The prevalence of , , and haemosporidian infections was investigated at three stations of the Khingan Nature Reserve, Amur Region, Russian Far East. Between 2021 and 2024, we sampled mainly passerine birds, with a total of 751 individuals belonging to 68 species. Birds were mist-netted during the breeding season at the "Kleshenskii" and "Karapcha" stations, and during the spring and autumn migrations at the "Lebedinii" station. The prevalence of different haemosporidian genera varied between "Karapcha" (coniferous–deciduous forest) and "Kleshenskii" (swampy plain with forest patches): and parasites were significantly more common at the "Karapcha" station, while parasites dominated at the "Kleshenskii" station. Based on these data and on infection patterns in resident bird species, we hypothesize that haemosporidians from all three genera can be transmitted at "Karapcha", but only (or mainly) at "Kleshenskii". Long-distance migrants had a higher prevalence of than sedentary bird species at both "Kleshenskii" and "Karapcha". We assume that parasites are also actively transmitted on the wintering grounds. At the "Lebedinii" station, the frequency of infections was higher in autumn than in spring. This pattern could be related to parasite transmission in the northern latitudes where the birds migrating through "Lebedinii" breed. In general, birds can become infected by haemosporidians either (1) on the breeding grounds or (2) on the wintering grounds and during migration. Our study revealed that, among breeding birds, location (i.e. "Kleshenskii" vs. "Karapcha") most strongly affected the infection prevalence, whereas among migrants at "Lebedinii", season (spring vs autumn) was the key factor. Whether a species was resident or migratory rendered a much smaller effect. We thus conclude that, in our study area, the prevalence of haemosporidian infection depended more on breeding-ground conditions than on those at the wintering grounds.
Keywords
птицы паразиты крови миграции птиц
Date of publication
25.09.2025
Year of publication
2025
Number of purchasers
0
Views
75

References

  1. 1. Антонов А.И., Парилов М.П., 2010. Кадастр птиц Хинганского заповедника и Бурениско-Хинганской (Архаринской) низменности. Хабаровск: ИВЭП ДВО РАН. 104 с.
  2. 2. Бобров В.В., 1995. О границе между Палеарктическим и Индо-малайским фаунистическими царствами на территории Китая (по данным о распространении грызунов) // Зоологический журнал. Т. 74. Вып. 12. С. 94–105.
  3. 3. Валькюнас Г., 1997. Гемоспоридии птиц // Acta Zoologica Lituanica. Т. 3–5. С. 1–607.
  4. 4. Нечаев В.А., Гамова Т.В., 2009. Птицы Дальнего Востока России (аннотированный каталог). Владивосток: Дальнаука. 564 с.
  5. 5. Соколов Л.В., Бумок В.Н., Марковец М.Ю., Симонов С.А., Синельщикова А.Ю., Галиков С.И., Маланцева М.В., Антонов А.И., Бабьянова М.С., Ангельва В.И., Торун К., 2023. Миграции и зимовки популяций обыкновенной кукушки от Британских островов до Камчатки – результаты телеметрии // Второй Всероссийский орнитологический конгресс (г. Санкт-Петербург, Россия 30 января – 4 февраля 2023 г.). Тезисы докладов. М.: Товарищество научных изданий КМК. С. 245–246.
  6. 6. Altizer S., Bartel R., Han B.A., 2011. Animal migration and infectious disease risk // Science. V. 331. P. 296–302.
  7. 7. de Angeli Dutra D., Filion A., Fecchio A., Martins Braga E., Poulin R., 2021. Migrant birds disperse haemosporidian parasites and affect their transmission in avian communities // Oikos. V. 130. P. 979–988.
  8. 8. Bates D., Maechler M., Bolker B., Walker S., 2015. Fitting linear mixed-effects models using lme4 // Journal of Statistical Software. V. 67. P. 1–48.
  9. 9. Bensch S., Waldenström J., Jonzen N., Westerdahl H., Hansson B., Seiberg D., Hasselquist D., 2007. Temporal dynamics and diversity of avian malaria parasites in a single host species // Journal of Animal Ecology. V. 76. P. 112–122.
  10. 10. Bonneaud C., Perez-Tris J., Federici P., Chastel O., Sorci G., 2006. Major histocompatibility alleles associated with local resistance to malaria in a passerine // Evolution. V. 60. P. 383–389.
  11. 11. Chagas C.R.F., Valkiūnas G., de Oliveira Guimarães L., Monteiro E.F., Guida F.J.V., Simões R.F., Rodrigues P.T., de Albuquerque Luna E.J., Kirchgarter K., 2017. Diversity and distribution of avian malaria and related haemosporidian parasites in captive birds from a Brazilian megalopolis // Malaria Journal. V. 16. Article № 83.
  12. 12. Ciloglu A., Ergen A.G., Inci A., Dik B., Duzlu O., Onder Z., Yetismis G., Bensch S., Valkiūnas G., Yildirim A., 2020. Prevalence and genetic diversity of avian haemosporidian parasites at an intersection point of bird migration routes: Sultan Marshes National park, Turkey // Acta Tropica. V. 210. Article No. 105465.
  13. 13. Dimitrov D., Ilieva M., Ivanova K., Brlik V., Zehlindjiev P., 2018. Detecting local transmission of avian malaria and related haemosporidian parasites (Apicomplexa, Haemosporida) at a Special Protection Area of Natura 2000 network // Parasitology Research. V. 117. P. 2187–2199.
  14. 14. Fecchio A., Chagas C.R.F., Bell J.A., Kirchgattend K., 2020. Evolutionary ecology, taxonomy, and systematics of avian malaria and related parasites // Acta Tropica. V. 204. Article № 105364.
  15. 15. Hartig F., 2022. DHARMa: residual diagnostics for hierarchical (multi-level/mixed) regression models. R package version 0.4.6. https://CRAN.R-project.org/package=DHARMa
  16. 16. Heim W., Antonov A., Kunz F., Sander M.M., Bastardot M., Beermann I., Heim R.J., Thomas A., Volkova V., 2023. Habitat use, survival, and migration of a little-known East Asian endemic, the yellow-throated bunting Emberiza elegans // Ecology and Evolution. V. 13. Article № e10030.
  17. 17. Hellgren O., Waldenström J., Perez-Tris J., Osi E.S., Hasselquist D., Krizanauskiene A., Ottosson U., Bensch S., 2007. Detecting shifts of transmission areas in avian blood parasites – a phylogenetic approach // Molecular Ecology. V. 16. P. 1281–1290.
  18. 18. Huang X., Dong L., Zhang C., Zhang Y., 2015. Genetic diversity, temporal dynamics, and host specificity in blood parasites of passerines in north China // Parasitology Research. V. 114. P. 4513–4520.
  19. 19. Lüdecke D., Ben-Shachar M.S., Patil I., Waggoner P., Markowski D., 2021. performance: an R package for assessment, comparison and testing of statistical models // Journal of Open Source Software. V. 6. Article № 3139.
  20. 20. Magallanes S., García-Longoria L., López-Calderón C., Reviriego M., de Lope F., Moller A.P., Marzal A., 2017. Uropygial gland volume and malaria infection are related to survival in migratory house martins // Journal of Avian Biology. V. 48. P. 1355–1359.
  21. 21. Merrill L., Levengood J.M., England J.C., Osborn J.M., Hazy H.M., 2018. Blood parasite infection linked to condition of spring-migrating lesser scaup (Aythya affinis) // Canadian Journal of Zoology. V. 96. P. 1145–1152.
  22. 22. Palinauskas V., Markovets M.Yu., Kosarev V.V., Efremov V.D., Sokolov L.V., Valkiūnas G., 2005. Occurrence of avian haematozoa in Ekaterinburg and Irkutsk districts of Russia // Ekologia. № 4. P. 8–12.
  23. 23. Palinauskas V., Iezhova T.A., Krizanauskiene A., Markovets M.Yu., Bensch S., Valkiūnas G., 2013. Molecular characterization and distribution of Haemoproteus minutus (Haemosporida, Haemoproteidae): A pathogenic avian parasite // Parasitology International. V. 62. P. 358–363.
  24. 24. Palinauskas V., Žiegyė R., Iezhova T.A., Ilgūnas M., Bernotienė R., Valkiūnas G., 2016. Description, molecular characterisation, diagnostics and life cycle of Plasmodium elongatum (lineage pERIRUB01), the virulent avian malaria parasite // International Journal of Parasitology. V. 46. P. 697–707.
  25. 25. R Development Core Team, 2023. R: A language and environment for statistical computing. Vienna: R Foundation for Statistical Computing.
  26. 26. Ricklefs R.E., Medeiros M., Ellis V.A., Svensson-Coelho M., Blake J.G., Loiseille B.A., Soares L., Fecchio A., Outlaw D., Marra P.P., Latta S.C., Valkiūnas G., Hellgren O., Bensch S., 2017. Avian migration and the distribution of malaria parasites in New World passerine birds // Journal of Biogeography. V. 44. P. 1113–1123.
  27. 27. Valkiūnas G., Iezhova T.A., Loiseau C., Sehgal R.N.M., 2009. Nested cytochrome b polymerase chain reaction diagnostics detect sporozoites of hemosporidian parasites in peripheral blood of naturally infected birds // Journal of Parasitology. V. 95. P. 1512–1515.
  28. 28. Valkiūnas G., Palinauskas V., Ilgūnas M., Bukauskaite D., Dimitrov D., Bernotienė R., Zehlindjiev P., Ilieva M., Iezhova T.A., 2014. Molecular characterization of five widespread avian haemosporidian parasites (Haemosporida), with perspectives on the PCR-based detection of haemosporidians in wildlife // Parasitology Research. V. 113. P. 2251–2263.
  29. 29. Valkiūnas G., Iezhova T.A., 2017. Exo-erythrocytic development of avian malaria and related haemosporidian parasites // Malaria Journal. V. 16. Article № 101.
  30. 30. Yang G., Peng Y., Wang H., Huang X., Dong L., 2023. Nowhere to escape: the cross-age avian haemosporidian exposure of migrants in northeast China // Journal of Avian Biology. Is. 7–8. Article № e03091.
  31. 31. Yusupova D.A., Schumm Y.R., Sokolov A.A., Quillfeldt P., 2023. Haemosporidian blood parasites of passerine birds in north-western Siberia // Polar Biology. V. 46. P. 497–511.
QR
Translate

Indexing

Scopus

Scopus

Scopus

Crossref

Scopus

Higher Attestation Commission

At the Ministry of Education and Science of the Russian Federation

Scopus

Scientific Electronic Library